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On the Theory of Discrete TLM Green’s
Functions in Three-Dimensional TLM
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Abstract—The response to a wave pulse incident on the bound-
ary of a certain spatial domain may be represented by discrete
TLM Green’s functions. On the other hand, the response to a
localized electromagnetic excitation at the boundary of a cer-
tain spatial domain may be calculated directly from Maxwell’s
equations and be represented by analytic TLM Green’s func-
tions. For low frequencies and small wave numbers, the analytic
TLM Green’s functions coincide with the discrete TLM Green’s
functions. Applying the analytic TLM Green’s functions in the
absorbing boundary condition at the boundary to the open
half-space reduces the computational effort considerably when
compared with the application of the discrete TLM Green’s
functions.

1. INTRODUCTION

RIGINALLY, the TLM-method was based on the

analogy of the propagation of an electromagnetic wave
in space with the signal propagation in a mesh of transmission
lines [1]-[3]. Recently, derivations of the three-dimensional
TLM-method with condensed symmetric node [4] from
Maxwell’s equations have been given [5]-[8]. The discrete
TLM Green’s functions [9] are defined as the response to
a single wave pulse excitation. Due to the field theoretic
foundation of the TLM method, there should be a relation
between the discrete TLM Green’s functions and the response
to a localized electromagnetic excitation calculated directly
from Maxwell’s equations. In the following, we use the term
analytic TLM Green’s functions for the discretized response to
a localized electromagnetic excitation. The objective of this
paper is to demonstrate the relation between the discrete TLM
Green’s functions and the analytic TLM Green’s functions as
well as the advantages connected with the use of the analytic
TLM Green’s functions.

The response to a wave pulse incident on the boundary
of a certain spatial domain is nonlocal with respect to space
and time. This response may be represented by discrete TLM
Green’s functions describing the relation between the wave
pulses incident on the boundary and the wave pulses scattered
from the boundary of the spatial domain. In this paper, we
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restrict ourselves to discrete TLM Green’s functions describing
the response to an excitation in the boundary surface separating
homogeneous spatial domains. This type of discrete Green’s
function is highly attractive since it allows one to analyze a
structure by partitioning it in substructures. This method is
known as time domain diakoptics [10].

As an example, we consider the discrete Green’s functions
for the open half-space allowing us to model the absorbing
boundary condition at the boundary to the open half-space.
We calculate the analytic TLM Green’s functions directly from
Maxwell’s equations by discretizing the response to a localized
electromagnetic excitation at the boundary of open half-space.
The analytic TLM Green’s functions and the discrete TLM
Green’s functions are identical for low frequencies and small
wave numbers. This is shown by assuming a Gaussian exci-
tation of the open half-space instead of a single wave pulse
and by filtering the discrete TLM Green’s function in spectral
domain. The filtering in spectral domain is necessary, because
the discrete TLM Green’s functions consist of parts describing
physical modes with small wave numbers as well as spurious
modes with large wave numbers, which both contribute to
frequencies approaching to zero [11]-[13].

The absorbing boundary condition at the boundary of the
open half-space is modelled by convolving the wave pulses in-
cident on the boundary to the open half-space with the discrete
TLM Green’s functions and the analytic TLM Green’s func-
tions, respectively. The analytic TLM Green’s functions rep-
resent the discretized response to an excitation corresponding
to a single TL.M wave pulse at the boundary. Analytically, the
spatial distribution of this excitation is represented by a two-
dimensional delta, pulse, and triangle function. The response
to this excitation is given by a spherical wave reflected from
the boundary. This spherical wave is bounded close around
a sphere with the radius r = ct, where ¢ is the free space
velocity of light. Thus the convolution may be restricted to a
set of pulses in a neighbourhood of this sphere. This property
allows one to reduce the convolution by one dimension and
to reduce the convolution in two-dimensional space and time
to a convolution in two-dimensional space, respectively. The
absorbing boundary condition is applied in the simulation of a
short-circuited microstrip line. The TLM results are compared
with the results obtained by analyzing the same microwave
structure with the FDTD method.

II. THE DISCRETE TLM GREEN’S FUNCTIONS

We consider discrete TLM Green’s functions describing the
relation between the wave pulses incident on the boundary
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and the wave pulses scattered from the boundary of the spatial
domain. This relation is given by the convolution

oo
kbn =k Gn * @n = Z =k Gnpn wan (1)
with T
nc B, 2
where
B ={ni,ng, - -,nn} 3)

represents a set of N boundary nodes. The vector ra,, is the
column vector representing the wave pulses incident on the
boundary, the vector b, is the column vector representing
the wave pulses scattered from the boundary. The matrix of
the discrete Green’s functions G, describes the response to
an excitation in an arbitrary boundary surface represented by
N boundary nodes. The left index k denotes the discrete time
coordinate related to the time coordinate ¢ via ¢ = kAt.

The boundary to the open half-space at x = 0 is intersected
by the two ports 1 and 3 of the condensed symmetric TLM
node representing horizontal and vertical polarization (Fig. 1).
We have used the node numbering scheme corresponding to
the symmetrical representation of the scattering matrix [6], [7].
For the open half-space, four discrete TLM Green’s functions
are defined. The discrete TLM Green’s function G'! describes
the impulse response at port 1 of all boundary nodes due to
an incident wave pulse into port 1 of one boundary node. We
define the discrete TLM Green’s function G*! as the impulse
response in port 3 of all boundary nodes due to an incident
wave pulse into port 1 of one boundary node. In the same
way, we define the discrete TLM Green’s functions G** and
G'3. With these definitions, (1) yields

A
= 33
k b3 0,m,n k—k' G31 G m—m/ n—n'
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x |“ , )
k! as 0,m’,n'
and
oo
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Fig. 1. A three-dimensional condensed symmetric TLM node.

respectively. The discrete space coordinates in y- and z-
direction are related to the space coordinates via y = mAl
and z = nAl. The discrete space coordinate | related to the
z-coordinate via x = [Al is zero at the boundary to the open
half-space.

The functions G'! and G®' may be calculated numerically
or algebraically [14], [15]. G33 and G'® are obtained by
a positive 90°-rotation of G'! and G3! around the z-axis.
According to Fig. 1, we obtain

33 11
kG, =k G ]90° 5 (6)

since by a positive 90°-rotation around the z-axis, ay is
transformed into as, and

13 31
kGrn = — kG nlooe @)

because by the same 90°-rotation, a3 is transformed into —ay.
A positive 90°-rotation of a function f(m,n) is described by
the transition f(m,n) — f(n,—m). Using the symmetries
[14] G, = —xG;l, and (G2, = —,G3) , yields the
symmetry relations

¥Gon = —kGrn ®)
and
kG = kG ©)

III. THE ANALYTIC TLM GREEN’S FUNCTIONS

For the calculatation of the analytic TLM Green’s functions
for the open haif-space given by x > 0, we start with the
wave equation

1 8°F
——=——=0 10

c? o2 (10)
where F represents the electric or the magnetic field vector,
F = FE H. We transform the wave equation into speciral

domain with respect to the coordinates ¢, y, and z. The Fourier
transformation with respect to the time variable ¢ and the space

AF

F(z,ky, koyw) = F{F(z,y,2,t)}

+o00 +co +oo
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variables y and z is defined by (11) as shown at the bottom
of the preceding page, and

F(z,y,2,t) = 1{F (z,ky, ks, w)}
+oo +oo +oo
=il L]
TF(x, ky, by w)e?BoyThezdwt) g dle dw
(12)

with the angular frequency w = 2xf and the wave vector
components k, and k.. Applying the Fourier transformation
to (10), we obtain

P 2
L LD (m LR i)?(x,ky,km =o.
X

13)

Separating this equation into cartesian components Fu with
@ = z,y,z yields

3ZFM(m, ky, k., w)
dz2

—(k2+k2—i’z>F (z,ky, kyyw) =0
Y z CQ Py Ty s vz, -
(14)

We solve (14) for the open half-space given by z > 0
considering the initial value problem with respect to the z-
coordinate. We use the Laplace transformation

E(p,ky, kyyw) = L{F (2, Ky, by w) }

E/ F oz, ky, ksyw)e™® dz (15)
0
and

F,l(x, ky, k., w) :L'_l{ﬁ'”(p, ky k. w)}

1 n T
EZ_WJ CFM(p,ky,kz,w)ep dp (16)

where C represents a closed path of integration in the complex
p-plane. With

{82F Wz, ky, ke, )}

Ox?
= pzpp(p7 ky7 kZ7w) - pﬁu(x7 ky: kz; w)l:c:O
3_1*:“(1:, ky, k., w)

oz

A7)

z=0

we obtain the transformed wave equation

pQFu(p’ ky, ksz) —pF”(x', ky, kz7w)|w=0

B OF (2, by, ksyw)
oz

- (kg + K2 —

=0

CIJZ ~
?)Fu(pakyakZ7w) =0 (18)
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and

Fu(p, ky, ks w)
OF (2, ky, ks, w)
_ ox

- 2
p2~<k§+kg—°c"—2>

respectively. For k2 + k2>
\/kg + k2 — (w/c)?. In this case, we use [16]

PF/A(CU» ky, k2, w)lz=0 +

z=0

19)

(w/c)?, we introduce oy =

L'"l{ 5 P 2} =coshayz 20)
b -y
and
L—l{ s 2}:sinha1x 1)
pT =03
for £ > 0 and obtain
— eX1® [
Fulz.ky kyyw) = 5 (Fu(a:,ky,kz7w)|z_o
iafﬂ(x,ky,kz,w)
o Ox 0
+ £ (F_H(x,ky,kz,wﬂw:g
_ iaF#(‘x?kwkZ:w) ) (22)
a1 ox z=0

The function F#(x, ky, k., w) exhibits exponentially increas-
ing and exponentially decreasing parts for increasing argument
z. Since F,(z, ky, k., w) has to vanish for z — oo, (22) yields

— 1 OF ,(x,k,, k.,w)
F#(-T)ky,kzyw”mzo = _a_l = a;

(23)

=0

which we may rewrite as

( + /R + K2 = (w/o)? ) (@, by, by @)]amo = 0.
(24)
The first order differential equation (24) represents the ab-
sorbing boundary condition for the evanescent modes with the

1/ k2 + k2 incident on the boundary

to the open half-space at z = 0.
For k2 + k2<(w/c)?, we

\/kg + k2 — (w/c)?. Using [16]

- Y4
L 1{p2+a%} = COS ok

— (2%} .
L 1{p2 +a§} = sin aox

transverse wave number

introduce o =

(25)

and

(26)
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for x > 0 yields

_ e]azz
Fu(z, ky, kyyw) = 5 (F”(:U,ky,kz,w)lmzo

7 37#(30, ky k., w)
(65} oz 2=0

e—]agx

+ (—F—#(SL', ky k., w)|e=0

9 OFu(z,ky, ks w) ) @7
=0

(6%} 6:E
For z — oo, the function F,(, ky, k,,w) must represent an
outgoing wave with respect to x. Therefore, we obtain

) OF u(, iy by )
Qs ox

_|_

Fu(ma ky7 kzv w)lm:O =

(28)

z=0

and

<% oy lwfe)? — k2 - kﬁ)ﬂ(m)u:o =0 (29

respectively. The first order differential equation (29) repre-
sents the absorbing boundary condition for the propagating
k2 + k2 incident on
the boundary to the open half-space at « = 0. The first order
differential operator (8/9x + jag) is equivalent to the first
order differential boundary operator introduced by Engquist
and Majda [17]. Approximating this first order differential
boundary operator yields the most commonly used absorbing
boundary conditions for FDTD [17]-{19] and TLM [20], [21].
Modelling the absorbing boundary condition at the boundary to
the open half-space, the wave pulses incident on the boundary
to the open half-space are convolved with the analytic TLM
Green’s functions. As the calculation of the analytic TLM
Green’s functions is based on (23) and (28), the absorbing
boundary condition using the analytic TLM Green’s functions
corresponds to an absorbing boundary condition absorbing
both evanescent and propagating modes.

Wave amplitudes are related to transverse electric and
magnetic field components. For a general definition of the
relationship between the wave amplitudes and the electric aad
magnetic field components, we introduce the vector of the
incident wave amplitudes

modes with the transverse wave number

a=1/2(—nxnx E+ Zyn x H) 30)
and the vector of the scattered wave amplitudes
b=-1/2(nxnx E+ Zon x H) 3D

for the boundary of an arbitrary spatial domain. The vector
n is the outward directed unit vector normal to the boundary
surface of the spatial domain. For three-dimensional TLM,
Zy is the wave impedance of the free space. For example,
sampling the vectors of the incident and scattered wave
amplitudes in the boundary surfaces of a three-dimensional
TLM cell yields the cell boundary mapping [6]. For the open
half-space with x > 0, the vector » in cartesian components
is given by » = [-1,0,0]". With @ = [as,a1,a3]” and
b = [bs,b1,b3]7, (30) and (31) yield the continuous incident
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and scattered wave amplitudes for the open half-space with
r >0

a1(y, 2,t) =1/2(Ey(Z,1) + ZoH.(Z,1))|z=0,

b1(y, z,t) = 1/2(Ey(F,t) — ZoH.(Z,1))|c=0,

a3(y, z,t) = 1/2(E.(Z,t) — ZOHy(*ﬁ t))]e=0,

bs(y, 2,t) =1/2(E.(Z,t) + ZOHy(i!: t))|z=o0,
ar(y,2,t) =0,

b (y,2,t) =0 (32)

For the calculation of the analytic TLM Green’s functions
corresponding to the discrete TLM Green’s functions G'* and
G3', we choose the localized electromagnetic excitation

al(?J, 2, t) - fyz(ya z)ft(t)7

a3y, z,t) =0. (33)

The function f,.(y, z) describes the spatial distribution of the
localized electromagnetic excitation a4 (y, z,t), the function
f+(t) describes the time dependence of a1 (y, z,t). In spectral
domain, (33) yields

al(k;ya kZa (4)) :?yz (ky’ kz)?t(“’)’

as(ky, k., w) =0. 34)

Maxwell’s equation may be written in spectral domain with
respect to the coordinates w, k,, and &, as

— W —

H,-kH,=—E,,
ky H, 7

— 8H W o

z41 = ——E ’
o= ox ]cZo Y
3Fy — W —
9z ]kyHm —J'(%Eza
k,E. - k., =—“’7Z°‘ﬁm,

= B—E_z (UZ()—

z g =—y—H 3
jk_E ox J C Y
oFE,

(35)

We consider Maxwell’s equations for z = 0 and eliminate the
partial derivatives with respect to & by inserting the boundary
conditions (23) and (28). Introducing the continuous incident
and scattered wave amplitudes for the open half-space with
x > 0 and inserting (34) yields

51 (0) = 7yz(ky7 kz)?t(w)all(kyv kzy UJ),
b3(0) = f . (ky. k) Fo(w)Ga1(ky, bz )

where we have introduced the Green’s functions in spectral
domain, G11(ky, k., w) and Gs1(ky, k.,w), given by

k2 —k2 /202 2w
vy (£ 2 p2 jed
(k3+k§)2( 62 ]ﬂy kz+j c a])a
2kyk. (2w?
(k2 + k2)2

(36)

all(ky; ksz) =

— 2w
G (ky br0) = - K-+

37N

2
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for k2 + k2> (w/c)® and

jé____]fz__ _%”f_k2_k2_2‘ia
(kRZ+E22\ 2 v E )

2k k. 2w? 9 5 2w
”(kz+k5>2(c2 bk e

for k2 + k2 < (w/c)?. As shown in the appendix, the Green’s
functions G11(y, 2,t) and G31(y, z,t) may be calculated as

Gll(kyy kZ) w) =

G31(ky; kza w) =

T\ cos(2¢)
Gui(r, o, t) = —5(t - E) oz (39)
and
sin(2¢p)
On(r,pt) = —8(t = 2) 2252, (40)
where we have used
Y =T COS,
z =rsing. 4n
With these results (36) yields
bl(y;zat) gll y7z t *(11 y’z t)
/ / fyz n—y&—~ Z)
1
and
b3(yaz t) —g31(y72 t) >k043 Y.z, t)
/ / fyz U/ y7 - Z)
1 5 25
Jt t——\/n +¢ G IE dndf. (43)

Choosing a delta distribution as the spatial distribution of
a1(y, z,t), the function f,,(y,z) is given by

fus(y, 2) = 8(y)6(2)(AD)? (44)
and therefore
Fya(by, k) = (A2

We denote the functions b,(y, z,t) and b3(y,z,t) due to a
delta distribution as the spatial distribution of a;(y, 2,t) by
b (y, z,t) and b§(y, z, t). Equations (42) and (43) yield

(Al?

(45)

B(ro,t) = —fi (t - -’é) cos(2¢) (46)
and
Al)?
V(r,p,t) = —f (t - g) sin(2y) (7I'7”g . 47)

For a two-dimensional pulse function as the spatial distribution
of a1(y, z,t)
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with
1 for|z|<1/2
h(z) =< 1/2 for |z| =1/2 49)
0  for |z|>1/2,
we obtain
1 [yHAyD) pzal2)
bf(ywzvt):_/ / ft
T Jy—(Aly2) Jz—(Al/2)
1 2
(1= SVETE) i dnd (O
and
1 y+(Al/2)  pz+(AL/2)
b3P(y,Z,t)=——/ / ft
T Jy—(al/2) Jz—(al/2)
1 2
(t— —+/n? +§2> @+ &n P dndf. (51)
The two-dimensional triangle function
fuz(y,2) = 9(y)g(2) (52)
with
1—|z| for|z|<1
9(z) = { for |z| > 1 (53)

represents the spatial distribution of the localized excitation
corresponding to the expansion functions used in the field
theoretic derivation of the condensed symmetric node [6], [7].
In this case, we have

1 y+Al z+ Al
O AN LR S,
1 52 2
(t— A/ +£2)(§T7;72)2— dnd¢ (54)
and

1 y+AlL z+Al
T . - _
Fs == [0 [ et-nate -2

(t— L +£2) (5225 5z dn dE. (59)

The analytic TLM Green’s functions are defined as the dis-
cretized response to a localized electromagnetic excitation.
The continuous response to the localized electromagnetic
excitation a1(y, z,t) at the boundary of the open half-space is
described by the functions b1 (y, z.¢) and b3(y, z,t). Thus the
analytic TLM Green’s functions are obtained by discretizing
the functions b; (v, z,t) and b3(y, 2,t). Using delta functions,
we sample the functions bq(y,z,t) and bs(y,z,t) at the
discrete space points ¥y = mA[l and z = nAl and at the
discrete time points ¢ = kAt. The analytic TLM Green’s
functions are the functions Gii(m,n,k) and Gzi(m,n,k)
given by

+oo +oo “+oo
Gii(m,n, k) = / / / b1(y, 2, 1)é(y — mAl)
-6(z — nADS(t — kAL) dy dz di (56)
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Fig. 2. The function 71 Gi: % and the filtered function 71 éﬁ ’go~

and

+o0 +oo +oo
Gsi(m,n, k) / / / bs(y, z,1)6(y — mAl)
8(z — nADS(t — kAL dy dz dt.  (57)

After having shown the identity of the discrete and the analytic
TLM Green’s functions for low frequencies and small wave
numbers, we will replace the discrete TLM Green’s function
in (5) by the analytic TLM Green’s function. This enables us
to model the absorbing boundary condition at the boundary of
the open half-space using analytic TLM Green’s function.

IV. COMPARISON OF THE DISCRETE AND
THE ANALYTIC TLM GREEN’S FUNCTIONS

Since TLM gives only a correct description of the field
evolution for signals with a frequency spectrum bounded
sufficiently below the TLM cutoff frequency [2], [3], we
assume a Gaussian excitation of the open half-space with
respect to time. For the numerical calculation of the discrete
TLM Green’s functions G519, and ,GL¥,, we choose the
excitation

e—-(kAt)z/Za-z)

fe(kAt) = (58)

with the pulse width ¢ = 16At in port 1 of the boundary node
(m,n) = (0,0). The index g indicates that we have used a
Gaussian excitation with respect to the discrete time coordinate
k. In Fig. 2, the function 71G o is depicted for m > 0. The
discrete TLM Green’s functlon consists of physical modes
with small wave numbers as well as of spurious modes with
large wave numbers and k,, = 7 /Al, respectively. To avoid the
spurious modes, we filter the discrete TLM Green’s function
with a low-pass filter in spectral domain and obtain the
filtered discrete TLM Green’s functions kGllg and ké’f,},gn',

respectively. The function 7; Gm,() is also shown in Fig. 2.
Figs. 3 and 4 show that the analytic TLM Green’s functions
and the discrete TLM Green’s functions are identical for
low frequencies and small wave numbers. The functions
71Gm0 and 716:’?,}79,” are compared with the analytic TLM
Green’s functions for two different localized electromagnetic
excitations at the boundary to the open half-space. The re-
sponse to the localized excitation is given by a spherical
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Fig. 4. The analytic TLM Green’s functions and 71 Gor I

wave reflected from the boundary. For small wave numbers
and [ky,k.]T < [r/AlLw/AlT, respectively, the analytic
TLM Green’s functions for a delta function, G®(m,n,k),
a two-dimensional pulse function, G¥'(m,n, k), and a two-
dimensional triangle function, G¥'(m,n,k), as the spatial
distribution of the localized electromagnetic excitation are
identical. Thus, for small wave numbers and for small fre-
quencies f < 1/(2At), due to the linearity of the convolution,
the application of the functions G®(m,n, k), GE(m,n, k) or
GT(m,n, k) in modelling the absorbing boundary condition

" at the boundary of the open half-space will give the same

resuits.

As a consequence of the singularity of the analytic TLM
Green’s functions at (m,n) = (0,0), there are deviations of
71 é:,igo and 71 éf’nlgn from the analytic TLM Green’s functions
for m =~ 0 due to errors in the filtering of the discrete
Green’s functions. To determine the values of the analytic
TLM Green’s functions at m = 0 and n = 0, we calculate
GF(0,0,k) and GE(0,0,k) for an arbitrary excitation with
respect to time. Equation (51) yields

(Al/2) (Al/z)
GE(0,0,k) =—= / /
(al/2)

: (kAt— —\/m)

2%
(52 n?)?

(Al/2)

dn d€ =0 (59)
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P, P,

Fig. 5. A short-circuited microstrip line.

because the integrand is an odd function in % and &. From
(50), we calculate

Al/ Al/
GF(0,0,k) / 2/ : (kAt—lx/n +§2)
n= E
2 _
T e

n/4 pAl/2cos
=——/ / ft(kAt——)
Al/ZSmLp)
/—7r/4~/7‘

(kAt C) COSE?QD) dr dy

‘:II+I2.

cos(2<p
r

(60)

Substituting ¢’ = 7/2 — ¢ in the integral I5 yields [ = —I;

and

GF(0,0,k) =0 (61)
respectively. In the same way, we may calculate

GT.(0,0,k) =0 (62)
and

GL(0,0,k) =0 (63)

As the two-dimensional pulse function is converging at the
two-dimensional delta distribution for small pulse widths and
large pulse amplitudes, we also apply

G41(0,0,k) =0 (64)

and
G5,(0,0,k) =0 (65)
when modelling the absorbing boundary condition at

the boundary to the open half—space using the functions
G®(m,n, k).

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 7, JULY 1995

V. ABSORBING BOUNDARY CONDITIONS USING
THE ANALYTIC TLM GREEN’S FUNCTIONS

As an example, we analyze the lossless microstrip line
depicted in Fig. 5. The microstrip line is short circuited and
thus, it represents a simple model of a via hole. The width of
the microstrip line is 160 um. The non-magnetic substrate with
the dielectric constant €, = 12.9 has the thickness of 140 pm.
Above the microstrip line, there is the open half-space with
g, = 1. We excite the z-component of the electric field with
a constant amplitude with respect to the y- and z-coordinate
and with a gaussian time dependence according to (58) with
o = 40At. We choose the length interval Al = 20 ym and
the time interval At = 0.0333 ps, respectively.

The absorbing boundary condition at the boundary of the
open half-space is modelled by convolving the wave pulses
incident on the boundary to the open half-space with the
discrete TLM Green’s functions and with the analytic TLM
Green’s functions, respectively. In a computer simulation, the
convolution has to be truncated with respect to space and
time. Using the John’s matrix representation [9], the discrete
TLM Green’s functions may be represented by matrices. We
approximate the discrete TLM Green’s functions by K + 1
matrices of the size (M +1)x (N +1). Applying the symmetry
relations of the discrete TLM Green’s functions, (5) yields

m~+M/2 n+N/2
dodomn = 3 ] Z
=m—-M/2n'=n—-N/2k'=k—K
11
T k— k'Gm —m/ ,n—mn' k’[al]O m! n’
m-+M/2 n+N/2
+ > X Z
m'=m—-M/2n'=n-N/2k'=
31
S € S ¥ [a3]0,m’,n’a
m+M/2  nt+N/2 k
o= 3. D, D

m'=m—-M/2n'=n—N/2k'=

31
tk— k’Gm m!',n—n’ kK’ [a/l]() m’ n
m+M/2 n+N/2

- ZZ

m/'=m—M/2n'=n—N/2k'=

11
bk Gyt k’[a3]0,m’,n’~ (66)

Equation (66) has been applied in the simulation of the short-
circuited microstrip line using discrete TLM Green’s functions.
Due to the convolution with respect to m,n and k£ and
to three dimensions, respectively, the computation time is
enormous. Furthermore, as the absorbing boundary condition
has been placed directly above the microstrip line, instability
has occurred due to spurious modes with large wave vectors
and [kq, ky, k.| = [r/Al, 7w /Al w/Al], respectively, near the
discontinuity [22].

The analytic TLM Green’s functions represent the dis-

cretized response to a localized excitation. Choosing
fe(kAt) = h(kAL) 67

the response to the localized excitation is given by a spherical
wave which is bounded close around a sphere with the radius
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Fig. 6. Pulse and triangle functions as localized excitation at the boundary;
E, at the observation point P .

r = ct, where ¢ is the free space velocity of light. Thus
the convolution may be restricted to a set of pulses in a
neighbourhood of this sphere and the convolution with respect
to k' may be eliminated. Replacing the discrete TLM Green’s
functions by G%(m,n, k), we obtain from (66)

m+M/2 n+N/2
k[bllo,m,n - Z Z
m’=m—M/2 Tbl=n—N/2
(n—n/)% — (m—m')?
' 7((n —n)2 + (m —m/)?)2 k—kg [01]0,m v
m+M/2° ntN/2
+ > 3
m/=m_M/2 n’=n—N/2
2(n = w)(m — m)
. 7((n —n')2 4+ (m —m')?2)2 k—ks [@3]0,m/ n7 5
m+M/2  nt+N/2
k[b3]o,mn = Z Z

m/'=m~M/2n'=n—N/2
2(n — n'Y(m —m’)
w (- W)+ (m = )
m+M/2 n+N/2

- )

m'=m—-M/2n'/=n—N/2

5 k—ks [afl](),m’,n’

(n=n")2 - (m—m')?

w((n— )2+ (m— m/)?

)2 k—ks [a3]0,m’ n!

(68)
where ks represehts a positive integer determined by
—1/24+2y/(m —m")2 + (n—n')2 <ks
<1/2424/(m—m")2 + (n —n')2. (69)

The convolution according to (68) has been tested in the
simulation of the short-circuited microstrip line. Due to the
delta distribution as spatial distribution of the localized exci-
tation, the analytic TLM Green’s functions incorporate patts
with large wave numbers leading to a strong instability of
the convolution due to the amplification of the spurious
modes at the boundary [22]. The functions G¥ (m,n, k) and
GT(m,n, k) incorporate less parts with large wave numbers
which results in a much more stable absorbing boundary
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Fig. 7. Pulse and triangle functions as localized excitation at the boundary;
E, at the observation point P.

condition. Assuming a time dependence according to (67), the
convolution with G¥(m,n, k) is given by

m+M/2 n+N/2
k[bl]O,m,n = Z Z
m/=m—M/2n'=n—-N/2 kp
. Gﬁ(m bl 'rn/7 mn — n/, k'P) k—kp [al]O,m',n’
m+M/2 n+N/2
DD NS
m/=m-M/2n'=n—N/2 kp
- Ghy(m —m',n — 0/ kp) k- aslom
m+M/2 n+N/2
NENE S SIS

m'=m—-M/2n'=n—N/2 kp
P l /
: G31(m -—m,n—n 7kP) k—kp [al]O,m’,n’
m+M/2 n+N/2

DI

m/'=m—M/2n'=n—N/2 kp
P 14 4
~Gi(m—m',n—n',kp) k—rplas]om

(70)
where kp represents a positive integer with

~1/2=V2+2/(m—m)2+ (n—n)2<kp<1/2
+ V24 2/ (m —m")? + (n—n')2. a1

The positive integer kp may have up to four different values,
so that the summation of kp in (70) consists of up to four
terms. In case of assuming the time dependence

fi(kAL) = g(kAt) (72)
and applying the functions G (m,n, k), we have to replace
kp by the positive integer kr determined by

1242 (=) <kp <1
+2v2 4 24/(m — m/)2 + (n — n/)2

(73)

so that the summation of kr in (70) consists of up to eight
terms.

Figs. 6 and 7 depict the TLM results of a simulation of the
short circuited microstrip line using the functions G¥ (m,n, k)
and GT(m,n,k) with M = N = 60. For the reference
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structure, the open half-space above the microstrip line has
been approximated by a large TLM mesh. The observation
point P; is situated directly under the microstrip line, the
observation point P, is located near the discontinuity. As
the absorbing boundary condition is placed directly above the
microstrip line, instability at P, is observed due to spurious
modes excited at the discontinuity [22]. As the spectrum
of the two-dimensional triangle function contains less parts
with large wave numbers than the spectrum of the two-
dimensional pulse function, the application of GT(m,n, k)
leads to a higher stability of the absorbing boundary condition
than the application of G¥(m,n,k). The instability of the
absorbing boundary condition using the functions G (m,n, k)
and GT(m,n, k) is about the same as the instability of the
absorbing boundary condition using the discrete TLM Green’s
functions.

Fig. 8 shows the electric field obtained by a simulation of
the reference structure at P, using the FDTD-method. Due
to a different implementation of the source, the values of the
electric field amplitudes differ from the values of the electric
field amplitudes calculated by the TLM-method. With respect
to the first positive maximum at ¢ = 500 At, the FDTD result
agrees well with the results obtained by the TLM simulations
using the analytic TLM Green’s functions, but differs from
the result obtained by the TLM simulation of the reference
structure. In the TLM mesh, at the discontinuity, spurious
modes are superimposed on the physical modes. In the FDTD
mesh, these kind of spurious modes do not occur [13]. Thus
the application of the analytic TLM Green’s functions leads
to results without spurious modes near the discontinuity.

Fig. 9 depicts the magnitude of the reflection coefficient
for the short circuited microstrip line calculated by the TLM
method. The influence of the open half-space has been sim-
ulated by a large TLM mesh (reference structure), by an
absorbing boundary condition using the functions GT (m, n, k)
and by a simple absorbing boundary condition. For the sim-
ple absorbing boundary condition, each port intersecting the
boundary to the open half-space has been terminated by a
reflection coefficient of zero. To prevent instabilities, for the
simulation involving GT (m,n, k), a TLM mesh of 10Al with
€, = 1 has been inserted between the microstrip line and the
boundary to the open half-space [22]. Beside the resonance at
140 GHz, the results obtained by the simulation of the refer-
ence structure and by ‘the simulation using G (m, n, k) agree
well with the FDTD results shown in Fig. 10. By the observa-
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Fig. 10. The magnitude of the reflection coefficient; FDTD-simulation.

tions from previous results, it is concluded that the resonance
at 140 GHz is due to spurious modes near the discontinuity.

VI. CONCLUSION

The relationship between the discrete TLM Green’s func-
tions and analytic TLM Green’s functions has been demon-
strated. The TLM method with condensed symmetric node
gives only a correct description of the field evolution for
signals with a frequency below the TLM cutoff frequency and
with a wave vector well below [r/Al, 7 /Al,7/Al]T. For this
frequency and wave vector range, the analytic TLM Green’s
functions and the discrete TLM Green’s functions are identical.
Due to the definition of the discrete TLM Green’s functions
as the impulse response to a single wave pulse excitation,
the complete frequency spectrum is excited when calculating
the discrete TLM Green’s functions. Therefore, in comparison
with the analytic TLM Green’s functions, the discrete TLM
Green’s functions contain additional spurious modes. Due to
these spurious modes, the algebraic calculation of the discrete
TLM Green’s functions [14] is more complicated then the
calculation of the analytic TLM Green’s functions.

The calculation of the analytic TLM Green’s functions
is based on the first order differential boundary operator
introduced by Engquist and Majda [17]. In contrast to the
absorbing boundary conditions based on the approximation of
this differential operator [17]-{21], the absorbing boundary
condition considered in this paper incorporates the exact dif-
ferential operator describing the absorption of both evanescent
and propagating modes. Thus, the analytic TLM Green’s
functions allow an exact formulation of absorbing boundary
conditions in TLM.
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The absorbing boundary condition at the boundary of the
open half-space is modelled by convolving the wave pulses
incident on the boundary with the discrete TLM Green’s func-
tions and the analytic TLM Green’s functions, respectively.
For the analytic TLM Green’s functions, the convolution may
be reduced by one dimension to a convolution with respect
to two-dimensional space only. Hence, the computational
effort for an absorbing boundary condition using discrete
TLM Green’s functions can be reduced considerably when
using the analytic TLM Green’s functions. The analytic TLM
Green’s functions for three different localized electromagnetic
excitations have been applied in modelling the absorbing
boundary condition by analyzing a short circuited microstrip
line. The parts with large wave numbers in the spectrum of
the localized electromagnetic excitation affect the stability of
the absorbing boundary condition. The smaller the parts with
large wave numbers, the more stability can be achieved.

The application of the analytic TLM Green’s functions
leads to results without spurious modes near the discontinuity
provided the boundary of the open half-space is placed near
the discontinuity. However, placing the boundary of the open
half-space near the discontinuity leads to a higher instability of
the absorbing boundary condition due to the spurious modes
excited at the discontinuity [22]. Reducing the parts with large
wave numbers in the spectrum of the localized electromagnetic
excitation, the instabilities may only be reduced but not
removed. These instabilities due to spurious modes represent
a clear drawback for the TLM method with condensed sym-
metric node. Therefore, future work is concentrated on the
use of the distributed [2], [3] and asymmetric condensed TLM
node [2], [3], [23]. In a TLM mesh with these nodes, spurious
modes with large wave numbers do not contribute for small
frequencies and thus, it is expected that the absorbing boundary
conditions exhibit a higher stability.

APPENDIX
THE CALCULATION OF THE GREEN’S FUNCTIONS

Using (12) we obtain

Guly,z.w) = 3o 2/ / k2+k2
. (——ki—k?——%}az)
eIy the2) g ke,

=l + I+ I3 (74)

for the Green’s function Gy1 (y, z,w) in frequency domain. The
integrals I11, I and I3 are given by )

=g [

. eIkyytk.z) dk, dk,

o] k2
o= | /w(k2+k2

-y tk®) gr dk, (75)
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and

w
2en? /k3+k§ <@ /e)
. H)_z azeﬁ(kyy-i—kzz) dk, dk,
w
i T2en? /’CE-HC?, > (w?/e?)
K2 - K2

cE2 Y gyt RReD) G dk,. (76
(k2 +k2)2 1 y de - T0)
For the calculation of I11, we substitute
ky =k cosk,,
k., =ksink, (77)
and use (41). With
cos” z — sin? z = cos(2z) (78)
we obtain
7 / / cos 2k
"o 2027T2 k=0 Jk, =0
- gk eosthe =) gk dk,. (79)
Substituting k, — ¢ = z and applying
cos(2z + 2¢) = cos(2z) cos(2¢) — sin(2z) sin(2¢p)  (80)
yields
w2 * N COS(Z‘T) kT cos
L, = —cos(2cp)m /k=0 /w:O % e’ “ dk dz.
(81)
With [24]
T
/ cos(2a:)em ST dx = —wJo(0) (82)
=0
and [25]
/ Jo(az) 4 1 (83)
= T 2
we obtain
w?
I11 = cos(2¢p) (84)

2¢27°

The function J(z) represents the Bessel function of the first
kind and of second order. The second integral I;2 may be
written as

) k2 2
I”“‘ﬂ/ / (CEYE)

Using [26]

cos(kyy) cos(k,z) dky dk..
(85)

—af (86)

> cos(ax) s
[ e
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for ¢ > 0 and R{B} >0 as well as [27]

0 B (1,2 _ ﬁZ

/0 ze” % cos(fx) dx = m &7

we calculate

1 2’2 _ y2
I 88
12 v (88)
and
cos(2

1y = - %9) (89)

respectively. The third integral 13 may be calculated in a way
analogous with the calculation of I;;. We substitute (77), use
(41) and solve the integral with respect to k., with the help of
(78), (80) and (82). We obtain

“le Jy(kr)

——k2dk
o K

w
Iy =— cos(2<p)a /k

w [ Js(kr) w?
2¢)— k% — = dk. (90
LRy S S
Substituting k& = zw/c yields
2 1 Jolx—
Iz =— cos(290);21—7r/ ( ) ——Lt /1 —-22dz
z=0
Tw
w2 o] J2 xr—
+]COS(2(,0)%/ ( >\/ 1dz. (91)
z=1
Applying the integrals [28]
1
Jo(az) = 1 1 cosa
/z—OT 1—w2d:1:=5—ﬁ+ a? ©2)
and [29]
/ \/—d sina (93)
yields
cos(2p) [ w? 1 1 e
IlSZT(‘Q? i L B

For the Green’s function G11{r, ,w) in frequency domain,
we obtain
COS(2§0) —yrw/e
———T’e
72

gll(ra (p>w) = (95)

and with
FH{em ) = 5(t — to)

the Green’s function G11 (7, ¢, t) in time domain given by (39).
The calculation of the Green’s function Gs1(y, 2, w) is done
in a similar way. We obtain

(96)

G31(y, z,w) = I31 + I3z + I3, 7N
where
w2
131 = sm(2<p)éT,
sin(2
133 = _sin(Zp) (98)

T2
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and

I33 =

sin(2¢) (__ui 1 99)

_ ie—w(w/c))
2¢2  r2 2
Applying (96) yields the function G31(r, ¢,1) in time domain
given by (40). The calculation of I3; and I33 has been done
analogously with the calculation of I;; and I13. Additionally,
we have used the relations

2sinz cosz = sin(2z) (100)
and
sin(2z + 2¢) = sin(2zx) cos(2¢) 4 cos(2z) sin(2¢). (101)
For the calculation of I32, we have applied [30]
*° zsin(az) T _ap
8y = e 102
/0 @+a) 2 (192
and [31]
e 2a03
i de = s, 103
/0 ze " sin(Bz) dz (7t (103)
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