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On the Theory of Discrete TLM Green’s

Functions in Three-Dimensional TLM
Michael Krttmpholz, Member, IEEE, Bernhard Bader, Student Member, IEEE, and Peter Russer, Fellow, IEEE

Abstract-The response to a wave pulse incident on the botmd-

ary of a certain spatial domain may be represented by discrete
TLM Green’s functions. On the other hand, the response to a

localized electromagnetic excitation at the boundary of a cer-

tain spatial domain may be calculated directly from Maxwell’s

equations and be represented by analytic TLM Green’s func-
tions. For low frequencies and small wave numbers, the analytic

TLM Green’s functions coincide with the discrete TLM Green’s

functions. Applying the analytic TLM Green’s functions in the

absorbing boundary condition at the boundary to the open
half-space reduces the computational effort considerably when

compared with the application of the discrete TLM Green’s
fuuctions.

I. INTRODUCTION

o RIGINALLY, the TLM-method was based on the

analogy of the propagation of an electromagnetic wave

in space with the signal propagation in a mesh of transmission

lines [1]–[3]. Recently, derivations of the three-dimensional

TLM-method with condensed symmetric node [4] from

Maxwell’s equations have been given [5]–[8]. The discrete

TLM Green’s functions [9] are defined as the response to

a single wave pulse excitation. Due to the field theoretic

foundation of the TLM method, there should be a relation

between the discrete TLM Green’s functions and the response

to a localized electromagnetic excitation calculated directly

from Maxwell’s equations. In the following, we use the term

analytic TLM Green’s functions for the discretized response to

a localized electromagnetic excitation. The objective of this

paper is to demonstrate the relation between the discrete TLM

Green’s functions and the analytic TLM Green’s functions as

well as the advantages connected with the use of the analytic

TLM Green’s functions.

The response to a wave pulse incident on the boundary

of a certain spatial domain is nonlocal with respect to space

and time. This response may be represented by discrete TLM

Green’s functions describing the relation between the wave

pulses incident on the boundary and the wave pulses scattered
from the boundary of the spatial domain. In this paper, we
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restrict ourselves to discrete TLM Green’s functions describing

the response to au excitation in the boundary surface separating

homogeneous spatial domains. This type of discrete Green’s

function is highly attractive since it allows one to analyze a

structure by partitioning it in substructures. This method is

known as time domain diakoptics [10].

As an example, we consider the discrete Green’s functions

for the open half-space allowing us to model the absorbing

boundary condition at the boundary to the open half-space.

We calculate the analytic TLM Green’s functions directly from

Maxwell’s equations by discretizing the response to a localized

electromagnetic excitation at the boundary of open half-space.

The analytic TLM Green’s functions and the discrete TLM

Green’s functions are identical for low frequencies and small

wave numbers. This is shown by assuming a Gaussian exci-

tation of the open half-space instead of a single wave pulse

and by filtering the discrete TLM Green’s function in spectral

domain. The filtering in spectral domain is necessary, because

the discrete TLM Green’s functions consist of parts describing

physical modes with small wave numbers as well as spurious

modes with large wave numbers, which both contribute to

frequencies approaching to zero [11]-[13].

The absorbing boundary condition at the boundary of the

open half-space is modelled by convolving the wave pulses in-

cident on the boundary to the open half-space with the discrete

TLM Green’s functions and the analytic TLM Green’s func-

tions, respectively. The analytic TLM Green’s functions rep-

resent the discretized response to an excitation corresponding

to a single TLM wave pulse at the boundary. Analytically, the

spatial distribution of this excitation is represented by a two-

dimensional delta, pulse, and triangle function. The response

to this excitation is given by a spherical wave reflected from

the boundary. This spherical wave is bounded close around

a sphere with the radius r = ct, where c is the free space

velocity of light. Thus the convolution may be restricted to a

set of pulses in a neighbourhood of this sphere. This property

allows one to reduce the convolution by one dimension and

to reduce the convolution in two-dimensional space and time

to a convolution in two-dimensional space, respectively. The

absorbing boundary condition is applied in the simulation of a

short-circuited microstrip line. The TLM results are compared

with the results obtained by analyzing the same microwave

structure with the FDTD method.

II. THE DISCRETE TLM GREEN’S FUNCTTONS

We consider discrete TLM Green’s functions describing the

relation between the wave pulses incident on the boundary

0018–9480/95$04.00 @ 1995 IEEE
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and the wave pulses scattered from the boundary of the spatial

domain. This relation is given by the convolution

kbn =k Gn *k an = F &k, Gn,n/ k!ani (1)

n’, k(=—cc

with

nEB, (2)

where

B={nl, n2, . . ..nN} (3)

represents a set of IV boundary nodes. The vector ~an is the

column vector representing the wave pulses incident on the

boundary, the vector kbn is the column vector representing

the wave pulses scattered from the boundary. The matrix of

the discrete Green’s functions kG. describes the response to

an excitation in an arbitrary boundary surface represented by

lV boundary nodes. The left index k denotes the discrete time

coordinate related to the time coordinate t via t = kAt.

The boundary to the open half-space at x = O is intersected

by the two ports 1 and 3 of the condensed symmetric TLM

node representing horizontal and vertical polarization (Fig. 1).

We have used the node numbering scheme corresponding to

the symmetrical representation of the scattering matrix [6], [7].

For the open half-space, four discrete TLM Green’s functions

are defined. The discrete TLM Green’s function Gl 1 describes

the impulse response at port 1 of all boundary nodes due to

an incident wave pulse into port 1 of one boundary node. We

define the discrete TLM Green’s function G31 as the impulse

response in port 3 of all boundary nodes due to an incident

wave pulse into port 1 of one boundary node. In the same

way, we define the discrete TLM Green’s functions G33 and

G13. With these definitions, (1) yields

[1bl

k b3 o,m,n= k-k[:~ $li-m,nn
[1al

* > (4)
k’ ‘3 o,m/,n~

and

k[bl](),m,n = F k–k’G&l–~,,~–~~ k’ [a3]0,m’,n’ )

~f,n<,kf=—w

+2 k–k(@-mt,n-nfk’ [a3]0,m’,n’ 1

mf,nj>kr=—a

k[bs](),m,m = 2 13k–k’G~–m!,n–nj k’[a3]0,m’,n’

~f,n{,k)=—~

ccl

+ E k–k’ G%3–mI,n–nI k’ [a3]0,m’,n’

m’, m’, k’=—m

(5)

10

7 8

9

Fig. 1. A three-dimensional condensed symmetric TLM node.

respectively. The discrete space coordinates in y- and .z-

direction are related to the space coordinates via y = mAl

and z = nAl. The discrete space coordinate 1 related to the

z-coordinate via z = lA.i is zero at the boundary to the open

half-space.

The functions G1 1 and G31 may be calculated numerically

or algebraically [14], [15]. G33 and G13 are obtained by

a positive 900-rotation of Gll and G31 around the x-axis.

According to Fig. 1, we obtain

/c@& ‘k G;l,n 90°> (6)

since by a positive 90° -rotation around the z-axis, al is

transformed into as, and

k G:3,n = —/@L1,n 90° (7)

because by the same 900-rotation, a3 is transformed into –al.

A positive 900-rotation of a function j(rn, n) is describf~d by.
the transition f (m, n) ~ ~(n, –m). Using the symmetries

[14] kG~~_~ = –kGZ,n and kG~~_m = –kG& yielcls the
symmetry relations

III. THE ANALYTIC TLM GREEN’S

For the calculatation of the analytic TLM Green’s functions

for the open half-space given by z Z O, we start with the

wave equation

(8)

(9)

FUNCTIONS

AF _ _l_82F
—–o

C2 f%? —
(lo)

where 1? represents the electric or the magnetic field vector,

F = E, Il. We transform the wave equation into spectral

domain with respect to the coordinates t, y, and z, The Fourier

transformation with respect to the time variable t and the space

F(z>ky, kz, u) =7{ F(z, Y, Z, t)}

=r3’H7:F(x’zt)e-’(k’y+kzz+w’)’@” (11)
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variables y and z is defined by (11) as shown at the bottom

of the preceding page, and

F(r, y,z, t) =Y-l{F(z, k,, kz, w)}

‘+ L:[:L:

.F(T, ky, kZ, w)e j(k, Y+~:z+wt) d~y dkz dw

and

(19)
(12)

respectively. For k$ + k: > (w/c)2, we introduce CUl =

d~. In this case, we use [16]
with the angular frequency w =

components ky and k,. Applying

to (10), we obtain

(

~2F’(z, kv, kz>~) _ p + & _

~xz Y

2xf and the wave vector

the Fourier transformation

{1~-l P
cosh O!IX

~2_a; =
(20)

W2 –
~ )F(z> kv, kz, w) = O.

(13)

Separating this equation into cartesian components FW with

K = z, y, z yields

and

(21)

for x > 0 and obtain

(6’2FW(x, ky, kz, w) _ kz +kz _ $

8X2 v~
)

Fp(x, kv, kz, w) = o.

(14)

We solve (14) for the open half-space given by x > 0

considering the initial value problem with respect to the Z-

coordinate. We use the Laplace transformation

~~(p, ky, kz, w) =L{~W(x>ky>kz, w)}

‘1”
~fl(x, kg, k,, w)e-Pz dx (15)

o

and

~,, (qky, kz, w) =C1{~P(p, ky, kz, w)}

1 ~Fw(x, ky, kz, w)— —
ax ) (22)

al Z=o

The function FW (x, kg, k., w) exhibits exponentially increas-

ing and exponentially decreasing parts for increasing argument

x. Since F& (z, ky, k=, w) has to vanish for x - cm, (22) yields

1 8Ffi(x, ky, kz, w)
~Jx, ky, kz, w)lz==o = –z

ax
(23)

Z=(J

which we may rewrite as
where C represents a closed path of integration in the complex

p-plane. With

{

~ ~2~&(x, k9, kz, w)
~xz

}

(: ~)”+ k; + k; – (w/c)z FM(z, ky, kz, w)[z=o = O.
\ ,’

(24)

The first order differential equation (24) represents the ab-

sorbing boundary condition for the evanescent modes with the

transverse wave number
G

k2 + kz incident on the boundary

to the open half-space at x = O.

For k; + k;< (w/c)z, we introduce 12z =

~~. Using [16]

= P2FP(P, ky, kz, w ) – PJ’W(2-,~,, L, ~)lz=o

~~p(x>ky, L, w)—
ax z+

we obtain the transformed wave equation

k ) –p~w(qkv, kz, w)lz=oP2F/J(P, kg> z,W

~~p(x, ky, L,w)

ax Z=o

—

( )
k;+ k: – : fiw(p, ky, kz, w) = O

(17)

(18)

{1~-1 P
= Cos 042X

pz + a;
(25)

and

{}

~-l Q2
= sin C12X

pz + a;
(26)
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for x ~ O yields

For x ~ eQ, the function ~W(x, kg, k., w) must represent an

outgoing wave with respect to x. Therefore, we obtain

and

(:+~~)’.(x)l=”=” ‘2’)

respectively. The first order differential equation (29) repre-

sents the absorbing boundary condition for the propagating

modes with the transverse wave number
G

k2 + k2 incident on

the boundary to the open half-space at z = O. The first order

differential operator (d/Ox + Ja2 ) is equivalent to the first

order differential boundary operator introduced by Engquist

and Majda [17]. Approximating this first order differential

boundary operator yields the most commonly used absorbing

boundruy conditions for FDTD [17]-[19] and TLM [20], [21].

Modelling the absorbing boundary condition at the boundary to

the open half-space, the wave pulses incident on the boundary

to the open half-space are convolved with the analytic TLM

Green’s functions. As the calculation of the analytic TLM

Green’s functions is based on (23) and (28), the absorbing

boundary condition using the analytic TLM Green’s functions

corresponds to an absorbing boundary condition absorbing

both evanescent and propagating modes.

Wave amplitudes are related to transverse electric and

magnetic field components. For a general definition of the

relationship between the wave amplitudes and the electric a.ld

magnetic field components, we introduce the vector of the

incident wave amplitudes

a=l/2(–n XmXE+ZOm XIl) (30)

and the vector of the scattered wave amplitudes

b=–1/2(?l xnx E+z@x H) (31)

for the boundary of an arbitrary spatial domain. The vector

n is the outward directed unit vector normal to the boundary

surface of the spatial domain. For three-dimensional TLM,

20 is the wave impedance of the free space. For example,

sampling the vectors of the incident and scattered wave

amplitudes in the boundary surfaces of a three-dimensional

TLM cell yields the cell boundary mapping [6]. For the open

half-space with z > 0, the vector n in cartesian components

is given by n = [–1, O,O]T. With a = [a., al, as]~ and

b = [bz, bl, b3]T, (30) and (31) yield the continuous incident

and scattered wave amplitudes for the open half-space with
X>o

q(y, .Z,t) = l/2( Ey(z, t) + .zoll. (d, ~))lz=o,

bl(y, 2’, t) = l/2( Ey(i?, t) – .zofrz(i~))lz=o>

as(g, Z, t) = l/2( E2(7, ~) – ZOHY(~, t))lz=o,

b3(y, z, t) = l/2( Ez(5, t) + -zo~y(~, q)lz=o,

f%(g, ‘%t) =0,

bz(y, 2, t) =0. (32)

For the calculation of the analytic TLM Green’s functions

corresponding to the discrete TLM Green’s functions G1’1 and

G31, we choose the localized electromagnetic excitation

al(y, z, t) = .fuZ(Y, ~).ft(t)>

as(y, z, ~) = O. (33)

The function ~y, (y, z) describes the spatial distribution of the

localized electromagnetic excitation al (y, z, t), the furction

ft(t) describes the time dependence of al (y, Z, t). In spectral
domain, (33) yields

~l(fk, L>u) =7yz(fh~z)lt(~)t

ti3(ky, k=, u) =0. (34)

Maxwell’s equation may be written in spectral domain with
respect to the coordinates w, ky and k~ as

lqzz – kzzy = SEz ,
Cz(l

m.
jk, Hz – ~ =.#~y,

Czo

aTy w—

ax
— – JCYZZ =~—EZ,

Czo

kvEz – ?@y = –+~z,
c

aEz Wzo —
Jk,Ez – ~ = –j—Hy,

c

my Wzo —

ax
— – JkyZ. z –&L (35)

We consider Maxwell’s equations for x = O and eliminate the

partial derivatives with respect to x by inserting the boundary

conditions (23) and (28). Introducing the continuous incident

and scattered wave amplitudes for the open half-space with
z ~ O and inserting (34) yields

~l(o) =lyz(~g, &)7t(w)Gll(k ~z>w)>

~3(o) =lyz(~v> Jb)7t(w)c31(~Y> &7w)

where we have introduced the Green’s functions in

domain, ~ll(ky, k=, w) and ~M(ky, k., w), given b

(36)

spectral
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for k~+k~>(u/c)2 and

for k: + k: < (w/c)2. As shown in the appendix, the Green’s

functions gll (y, z, t) and G’31(y, z, t) may be calculated as

and

G3,(r,9, t) = -b(t - :)%,

(39)

(40)

where we have used

y=’r Cosp,

,zErsinp. (41)

With these results (36) yields

and

Choosing a delta distribution as the spatial
al (y, .z, t), the function fvz(y, Z) is given by

fvz(Y, ~) = ~(Y)6(Z)(Al)2

and therefore

?V.(ky, k,)= (A02.

distribution of

(44)

(45)

We denote the functions 131(y, z, t) and b3(y, z, t) due to a
delta distribution as the spatial distribution of al (y, z, t) by

b! (y, Z, t) and bj(y, Z, t). Equations (42) and (43) yield

(A1)2
b:(r, q, t) = –f, (t – :) cos(2q)7 (46)

and

(A1)2
b~(r, p,t) = –ft(t – ~) sin(2p)— (47)

7rr2 “

For a two-dimensional pulse function as the spatial distribution

of al(y, z,t)

fw(Y> ~) = XY)~(~)> (48)

with

{

1 for 1~1< 1/2

h(~) = 1/2 for Izl = 1/2 (49)

o for Izl > 1/2,

we obtain

b:(y> ~,
‘)”:l:::)l;:;)”

( t–@Tp ) (2-72
(<2+ r/q2

dq d~ (50)
c

and

L::;)l

z+(A1/2)

b;(y, ~,t) =–: ft
z–(Al/2)

(t–Q- ) 2(r7

c ((’ + ??2)2

The two-dimensional triangle function

f!/z(Y, ~)= 9(Y)9(~)

with

dq d<. (51)

(52)

(53)

represents the spatial distribution of the localized excitation

corresponding to the expansion functions used in the field

theoretic derivation of the condensed symmetric node [6], [7].

In this case, we have

y+Al z+A1

b~(y, z,t) = :
//

9(n – Y)9(’$ – ~)ft
y–Al z—At

“(

t–~~~
)

p -7

(p+ q’)z
dq d~ (54)

c

and

The analytic TLM Green’s functions are defined as the dis-

cretized response to a localized electromagnetic excitation.

The continuous response to the localized electromagnetic

excitation al (y, Z, t) at the boundwy of the open half-space is

described by the functions bl (y, Z, t) and b3(y, Z, t). Thus the

analytic TLM Green’s functions are obtained by discretizing

the functions bl (y, Z, t) and b3(y, Z, t). Using delta functions,

we sample the functions bl (y, Z, t) and b3(y, Z, t) at the

discrete space points y = mAl and z = nAl and at the

discrete time points t = kAt. The analytic TLM Green’s

functions are the functions Gll (m, n, k) and G31 (m, n, k)

given by

“I’mnk)=l:L:L:b(y2t)6(y-mA’)
. 6(.z – nAl)6(t – kAt) dy d~ dt (56)
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0.0001I
discrete Green’s function — I

o

-0.0001

-0.0002

-0.0003

-0.0004

-0.0005

-0.00061 I
o 10 20 30 40 50 60 70

m

Fig. 2. The function 71 G~~ and the filtered function 71 ~~,{.

and

““mnk’=l:l:l:b’(””’)’(”-mAz)
. 6(z – nAl)6(t – kAt) dy d~ dt. (57)

After having shown the identity of the discrete and the analytic

TLM Green’s functions for low frequencies and small wave

numbers, we will replace the discrete TLM Green’s function

in (5) by the analytic TLM Green’s function. This enables us

to model the absorbing boundary condition at the boundary of

the open half-space using analytic TLM Green’s function.

IV. COMPARISON OF THE DISCRETE AND

THE ANALYTIC TLM GREEN’S FUNCTIONS

Since TLM gives only a correct description of the field

evolution for signals with a frequency spectrum bounded

sufficiently below the TLM cutoff frequency [2], [3], we

assume a Gaussian excitation of the open half-space with

respect to time. For the numerical calculation of the discrete

119 and ~G~3,~, we choose theTLM Green’s functions ~Gm,n

excitation

~t(kAt) = ~-@A’)2/zc2) (58)

with the pulse width o = 16At in port 1 of the boundary node

(m, n) = (O, O). The index g indicates that we have used a

Gaussian excitation with respect to the discrete time coordinate

k. In Fig. 2, the function 71G#$ is depicted for m 20. The

discrete TLM Green’s function consists of physical modes

with small wave numbers as well as of spurious modes with

large wave numbers and kv = T/Al, respectively. To avoid the

spurious modes, we filter the discrete TLM Green’s function

with a low-pass filter in spectral domain and obtain the

filtered discrete TLM Green’s functions kGm,n“119 and ~G~l~,

respectively. The function 71G~$ is also shown in Fig. 2.

Figs. 3 and 4 show that the analytic TLM Green’s functions

and the discrete TLM Green’s functions are identical for

low frequencies and small wave numbers. The functions

71 ~~~ and 71GL~,gm are compared with the analytic TLM
Green”s functions for two different localized electromagnetic

excitations at the boundary to the open half-space. The re-

sponse to the localized excitation is given by a spherical

0.0001I I filtered discrete Green’s function —

m

Fig. 3. The anrdytic TLM Green’s functions and 71 G:,{.

0.0001 I filtered discrete Green’s function —
analytic function for pulse function —
analvtic function for delta function - -

-“. ”””0 o 10 20 30 40 50 60

4-2.

Fig. 4. The analytic TLM Green’s functions and 71 G%l,g~.

o

wave reflected from the boundary. For small wave numbers

and [kg, kJT << [T/Al, T/Ai]T, respectively, the analytic

TLM Green’s functions for a delta function, G&(m, n, k),

a two-dimensional pulse function, Gp (m, n, k), and a two-

dimensional triangle function, GT(m, n, k), as the spatial

distribution of the localized electromagnetic excitation are

identical. Thus, for small wave numbers and for small fre-

quencies j’ << l/(2At), due to the linearity of the convolution,

the application of the functions Gd (m, n, k), Gp(m, n, k) or

GT (m, n, k) in modelling the absorbing boundary condition

at the boundary of the open half-space will give the same

results.

As a consequence of the singularity of the analytic TLM

Green’s functions at (m, n) = (O, O), there are deviations of

71G~~ and 71G~l~m from the analytic TLM Green’s functions
for ~ % O due to errors in the filtering of the discrete

Green’s functions. To determine the values of the anal~ytic

TLM Green’s functions at m = O and n = O, we calculate

G~l (0, O, k) and G$l (O, O, k) for an arbitrary excitation ‘with

respect to time. Equation (51) yields

r’2)/
(A1/2)

m -(A1,2) -,Al,2,f’
G:’(O, O, k) = –~
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“P, k
x

Fig. 5. A short-circuited microstrip line.

because the integrand is an odd function in q and ~. From

(50), we calculate

=11+1’. (60)

Substituting p’ = 7r/2 – p in the integral 12 yields 12 = –11

and

Gfl(O, O, k) = O (61)

respectively. In the same way, we may calculate

G~l(O, O, k) = O (62)

and

G;l(O, O, k) = O. (63)

As the two-dimensional pulse function is converging at the

two-dimensional delta distribution for small pulse widths and

large pulse amplitudes, we also apply

G~l(O, O, k) = O

and

G~l(O, O, k) = O

when modelling the absorbing boundary

the boundary to the open half-space using

G8(m, n, k).

(64)

(65)

condition at

the functions

V. ABSORBING BOUNDARY CONDITIONS USING

THE ANALYTIC TLM GREEN’S FUNCTIONS

As an example, we analyze the lossless microstrip line

depicted in Fig. 5. The microstrip line is short circuited and

thus, it represents a simple model of a via hole. The width of

the microstrip line is 160 pm. The non-magnetic substrate with

the dielectric constants. = 12.9 has the thickness of 140 ~m.

Above the microstrip line, there is the open half-space with

S, = 1. We excite the z-component of the electric field with

a constant amplitude with respect to the g- and z-coordinate

and with a gaussian time dependence according to (58) with
~ = 40 At. We choose the length interval Al = 20pm and

the time interval At = 0.0333 ps, respectively.

The absorbing boundary condition at the boundary of the

open half-space is modelled by convolving the wave pulses

incident on the boundary to the open half-space with the

discrete TLM Green’s functions and with the analytic TLM

Green’s functions, respectively. In a computer simulation, the

convolution has to be truncated with respect to space and

time. Using the John’s matrix representation [9], the discrete

TLM Green’s functions may be represented by matrices. We

approximate the discrete TLM Green’s functions by K + 1

matrices of the size (~+ 1) x (IV+ 1). Applying the symmetry

relations of the discrete TLM Green’s functions, (5) yields

m+M12 ni-N12 k?

m’=m —M/2 n’=n —N/2 k’=k —K

“ k–k’@- ~,n-nf k’[al]o,m’,n’

WWtM/2 n+ N/2

‘EEk
~t=m —M/2 n!=n —N/2 k’=k —K

“ k–k’Gil–~, ,n-n k’[a3]0,m’,n’,

m+ M/2 n+ N/2 k

~j=~— M/2n)=n– N/2k1=k —K

31
[k—k’G’~_~t,n-n! k! al]o,m,,n(

m+ M/2 n+ N/2

-Xxk
77zl=m-M/2 nr=n —N/2 kl=k —K

“ k–k’ I%%_rn! ,n-n k’[a3]0,m’,n’ (66)

Equation (66) has been applied in the simulation of the short-

circuited microstrip line using discrete TLM Green’s functions.

Due to the convolution with respect to m, n and k and

to three dimensions, respectively, the computation time is

enormous. Furthermore, as the absorbing boundary condition

has been placed directly above the microstrip line, instability

has occurred due to spurious modes with large wave vectors

and [k., kv, k.] = [~/Al, n/Al, T/Ai], respectively, near the
discontinuity [22].

The analytic TLM Green’s functions represent the dis-

cretized response to a localized excitation. Choosing

~,(kAt) = h(kAt) (67)

the response to the localized excitation is given by a spherical

wave which is bounded close around a sphere with the radius
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Fig. 6. pulse and triangle functions as localized excitation at the boundary;
E. at the observation point PI.

r = et, where c is the free space velocity of light. Thus

the convolution may be restricted to a set of pulses in a

neighbourhood of this sphere and the convolution with respect

to k’ may be eliminated. Replacing the discrete TLM Green’s

functions by Gf (m, n, k), we obtain from (66)

m+ M/2 n+ N/2

k[bl]l),m,n= x’ 2
m’=m– M/2 nt=n– N/2

. (n - TJ)2 - (m - WL’)2 ,_k61a110 ~, ~,

7r((n – 73’)2+ (m – VL’)2)2 ,>

m+ M/2 n+ N/2

“EE

mt=m– M/2 n’=n– N/2

2(n – n’)(m – m’)
&kf [Us]o,??t’,n’1

T((n – n’)2 + (m – m’)2)2

m+Mf2 n+ N/2

k[b3]@,n =
E’ 2

ml=m– M/2 n!=n– N/2

2(n – n’)(m – m’)
[k–k6 al]o,m’,n’

7r((n – n’)2 + (m – m’)2)2

m+ M/2 n+ N/2

-xx
m:=m —M/2 nl=n—N/2

. (n - n’)2 - (m - m’)2 k_k6 ~a,lo ~, ~,

7r((n – n’)2 + (m – m’)2)2
,)

(68)

where ka represents a positive’ integer determined by

— 1/2 + 2<(m – m’)2 + (n – n’)2 < kfi

< 1/2 + 2~(m – m’)2 + (n – n’)2. (69)

The convolution according to (68) has been tested in the

simulation of the short-circuited microstrip line. Due to the

delta distribution as spatial distribution of the localized exci-
tation, the analytic TLM Green’s functions incorporate parts

with large wave numbers leading to a strong instability of

the convolution due to the amplification of the spurious

modes at the boundary [22]. The functions Gp (m, n, k) and

GT (m, n, k) incorporate less parts with large wave numbers

which results in a much more stable absorbing boundary

I%. 7. puke and triangle functions as localized excitation at the boundarv:
El at the observation ~oint P2.

. .

condition. Assuming a time dependence according to (67), the

convolution with Gp (m, n, k) is given by

k[bl](),m,n=

k[b3](3,m,n =

m+ M/2 n+ N/2

XZE
m’=m —M/2 nf=n– N/2 kp

. G~l(m – m’, n – n’, kp) k_kP [al]o,m/,n,

m+ M/2 n+ N/2

‘xxx
mIzm– M/2 nr=n —N/2 kp

. Gf’(m – m’, n – n’, kp) &kP [as]o,~t,n,,

rni-M/2 n+ N/2

EXE
mI=77-&f/2 7zf=n-Ivf2 kp

. GfJm – m’, n – n’, kp) &kP[al]o,~,,m,

7T+M/2 n+ N/2

-ZEE
m’=m —M/2 n’=n– N/2 kp

. Gfl(m – m’, n – n’, kp) &~p [as]o,~f,~,,

(70)

where kp represents a positive integer with

— 1/2 – fi+2~(m-m’)2 + (n–n’)2<kp< 1/2

+ W+ 2{(m – m’)2 + (n – n’)2. (71)

The positive integer kp may have up to four different values,

so that the summation of k~ in (70) consists of up to four

terms. In case of assuming the time dependence

f,(kAt) = g(ldt) (72)

and applying the functions GT (m, n, k), we have to replace

kp by the positive integer kT determined by

‘1–2ti+ 2~(m-m’)2+(n-nr)2 <kT<l

+ 2fi+ 2~(m – m’)2 + (n – n’)2 (73)

so that the summation of kT in (70) consists of up to eight

terms.

Figs. 6 and 7 depict the TLM results of a simulation of the

short circuited microstrip line using the functions Gp (m, n, k)

and GT (m, n, k) with M = iV = 60. For the reference
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FDTD-simuIationof the reference structure; ~, at P2.

structure, the open half-space above the microstrip line has

been approximated by a large TLM mesh. The observation

point PI is situated directly under the microstrip line, the

observation point P2 is located near the discontinuity. As

the absorbing boundary condition is placed directly above the

microstrip line, instability at P2 is observed due to spurious

modes excited at the discontinuity [22]. As the spectrum

of the two-dimensional triangle function contains less parts

with large wave numbers than the spectrum of the two-

dimensional pulse function, the application of GT(rn, n, k)

leads to a higher stability of the absorbing boundary condition

than the application of GP(rn, n, k). The instability of the

absorbing boundary condition using the functions Gp (m, n, k)

and GT (m, n, k) is about the same as the instability of the

absorbing boundary condition using the discrete TLM Green’s

functions.

Fig. 8 shows the electric field obtained by a simulation of

the reference structure at P2 using the FDTD-method. Due

to a different implementation of the source, the values of the

electric field amplitudes differ from the values of the electric

field amplitudes calculated by the TLM-method. With respect

to the first positive maximum at t = 500 At, the FDTD result

agrees well with the results obtained by the TLM simulations

using the analytic TLM Green’s functions, but differs from

the result obtained by the TLM simulation of the reference

structure. In the TLM mesh, at the discontinuity, spurious

modes are superimposed on the physical modes. In the FDTD

mesh, these kind of spurious modes do not occur [13]. Thus

the application of the analytic TLM Green’s functions leads

to results without spurious modes near the discontinuity.

Fig. 9” depicts the magnitude of the reflection coefficient

for tie short circuited microstrip line calculated by the TLM

method. The influence of the open half-space has been sim-

ulated by a large TLM mesh (reference structure), by an

absorbing boundary condition using the functions GT (m, n, k)

and by a simple absorbing boundary condition. For the sim-

ple absorbing boundary condition, each port intersecting the

boundary to the open half-space has been terminated by a

reflection coefficient of zero. To prevent instabilities, for the

simulation involving GT (m, n, k), a TLM mesh of 10A1 with

s. = 1 has been inserted between the microstrip line and the

boundary to the open half-space [22]. Beside the resonance at

140 GHz, the results obtained by the simulation of the refer-

ence structure and by the simulation using GT (m, n, k) agree
well with the FDTD results shown in Fig. 10. By the observa-

Flg. 9.

Fig. 10.

GHz

The magnitude of the reflection coefticien~ TLM-simulations.

o

\

m
u

-3 —-- +

GHz

The magnitude of the reflection coefficient; FDTD-simulation

tions from previous results, it is concluded that the resonance

at 140 GHz is due to spurious modes near the discontinuity.

VI. CONCLUSION

The relationship between the discrete TLM Green’s func-

tions and analytic TLM Green’s functions has been demon-

strated. The TLM method with condensed symmetric node

gives only a correct description of the field evolution for

signals with a frequency below the TLM cutoff frequency and

with a wave vector well below [r/Al, n/Al, X/ Al]T. For this

frequency and wave vector range, the analytic TLM Green’s

functions and the discrete TLM Green’s functions are identical.

Due to the definition of the discrete TLM Green’s functions

as the impulse response to a single wave pulse excitation,

the complete frequency spectrum is excited when calculating

the discrete TLM Green’s functions. Therefore, in comparison

with the analytic TLM Green’s functions, the discrete TLM

Green’s functions contain additional spurious modes. Due to

these spurious modes, the algebraic calculation of the discrete

TLM Green’s functions [14] is more complicated then the

calculation of the analytic TLM Green’s functions.

The calculation of the analytic TLM Green’s functions

is based on the first order differential boundary operator

introduced by Engquist and Majda [17]. In contrast to the

absorbing boundary conditions based on the approximation of

this differential operator [17]-[21], the absorbing boundary

condition considered in this paper incorporates the exact dif-

ferential operator describing the absorption of both evanescent

and propagating modes. Thus, the analytic TLM Green’s

functions allow an exact formulation of absorbing boundary

conditions in TLM.
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The absorbing boundary condition at the boundary of the

open half-space is modelled by convolving the wave pulses

incident on the boundary with the discrete TLM Green’s func-

tions and the analytic TLM Green’s functions, respectively.

For the analytic TLM Green’s functions, the convolution may

be reduced by one dimension to a convolution with respect

to two-dimensional space only. Hence, the computational

effort for an absorbing boundary condition using discrete

TLM Green’s functions can be reduced considerably when

using the analytic TLM Green’s functions. The analytic TLM

Green’s functions for three different localized electromagnetic

excitations have been applied in modelling the absorbing

boundary condition by analyzing a short circuited microstrip

line. The parts with large wave numbers in the spectrum of

the localized electromagnetic excitation affect the stability of

the absorbing boundary condition. The smaller the parts with

large wave numbers, the more stability can be achieved.

The application of the analytic TLM Green’s functions

leads to results without spurious modes near the discontinuity

provided the boundary of the open half-space is placed near

the discontinuity. However, placing the boundary of the open

half-space near the discontinuity leads to a higher instability of

the absorbing boundary condition due to the spurious modes

excited at the discontinuity [22]. Reducing the parts with large

wave numbers in the spectrum of the localized electromagnetic

excitation, the instabilities may only be reduced but not

removed. These instabilities due to spurious modes represent

a clear drawback for the TLM method with condensed sym-

metric node. Therefore, future work is concentrated on the

use of the distributed [2], [3] and asymmetric condensed TLM

node [2], [3], [23]. In a TLM mesh with these nodes, spurious

modes with large wave numbers do not contribute for small

frequencies and thus, it is expected that the absorbing boundary

conditions exhibit a higher-stability.

APPENDH

THE CALCULATION OF THE GREEN’S FUNCTIONS

Using (12) we obtain

coca k; – k:
%1(Y, .Z$~) = &

H —cc —CC (k: + k;)’

(2W2.—
C2

–~; –#!Ja2
c )

(74)

for the Green’s function gll (g, z, w) in frequency domain. The

integrals 111,112 and 113 are given by

. ,cy(kw+kz~) dky dk=, (75)

For the calculation of 111, we substitute

kv =k coskv,

k. = k sin kp

and use (41). With

COS2x – sin2 x = COS(2X)

(77)

(78)

we obtain

. (jwms(k,-v) dk dkp. (79)

Substituting kv – p = x and applying

COS(2X+ 2P) = COS(2Z) cos(2p) – sin(2x) sin(2p) (80)

yields

(81)

With [24]

/

x
cos(2z)e~p ‘Os$ dx = –nJ2(/3) (82)

Z=o

and [25]

we obtain

(83)

(84)

The function J2(x) represents the Bessel function of the first

kind and of second order. The second integral Ilz may be

written as

m k:–k;
112 =–;

/“/ (k: + k?)
cos(kyy) cos(k. ~) dky dkz .

00
(85)

Using [26]

J
~cos(ax) dx = ~e–ap

o (0’+ X2) 2P
(86)
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for a z O and !R{~} >0 as well as [27]

we calculate

1 ~z–yz
112=– ~ (88)

m (Z + yz)z

(89)

respectively. The third integral 113 may be calculated in a way

analogous with the calculation of 111. We substitute (77), use

(41) and solve the integral with respect to k. with the help of

(78), (80) and (82). We obtain - ‘

dk. (90)

Substituting k = xu/c yields

Applying the integrals [28]

and [29]

yields

For the Green’s function &l (r, p, w) in frequency domain,

we obtain

(95)

and with

~-l{e-wlto} = fs(t - to) (96)

the Green’s function Qll (r, p, t) in time domain given by (39).
The calculation of the Green’s function ~31 (y, z, w) is done

in a similar way. We obtain

where

W2
131 = SXZP)=,

132=-*, (98)
m-z

Applying (96) yields the function g31 (r, p, t) in time domain

given by (40). The calculation of 131 and 133 has been done

analogously with the calculation of 111 and 113. Additionally,

we have used the relations

2 sin x cos z = sin(2x) (loo)

and

sin(2x + 2P) = sin(2x) cos(2p) + COS(2X) sin(2p). (101)

For the calculation of 132, we have applied [30]

sm x sin(ax)

0 (~z + x2) ‘x= ~e-afl

and [31]

(102)

/“ xc–ax “sm(~x) dx = ~a2~$2)2 ~ (103)
o
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